
2026/02/04 06:38 1/4 CO²-Projekt des Bürgernetzes Dillingen e.V.

DokuWiki der Linux-AG im Bürgernetz Dillingen e.V. - https://www.linuxag.bndlg.de/dokuwiki/

CO²-Projekt des Bürgernetzes Dillingen e.V.

aus dem LRAWAN Projekt übernommen zum Weiterführen

http://esp8266-server.de/CO2Ampel.html

etwas Theroie zu CO2 Sensoren:
https://www.msxfaq.de/sonst/bastelbude/co2_sensor.htm

etwas zur Orientierung (um ein Gefühl für die Werte zu bekommen)
https://frida-kahlo-schule.lvr.de/media/lvrfridakahloschule/aktuelles/corona/Lueften_in_Klassenraeume
n_Empfehlungen_LVR_Dezernat_12.40_Arbeitssicherheit.pdf

Na dann legen wir mal los …
Startpunkt dieses Projekts ist Sergey Smolnikov's esp32-with-co2-sensor-mh-z19b-and-lcd-display-
nokia-5110
Link dazu: https://github.com/satr/esp32-with-co2-sensor-mh-z19b-and-lcd-display-nokia-5110
Zuerst wurde das Nokia Display durch das auf dem TTGO Lora Board verbaute SSD1306 ersetzt. Da
das Display meines letzten vorhandenen TTGO ESP32 LORA allerdings defekt war, habe ich mir
kurzerhand per ebay ein kompatibles beschafft und pinkompatibel angeschlossen. Dies bedingt
natürlich eine Änderung der Displayansteuerung in Smolnikov's Code:
aus:

//pins description are above
U8G2_PCD8544_84X48_F_4W_SW_SPI display(U8G2_R0, /* clock=*/ 14, /* data=*/
13, /* cs=*/ 15, /* dc=*/ 27, /* reset=*/ 26); // Nokia 5110 Display
//put another display from this file:
https://github.com/olikraus/u8g2/blob/master/tools/inoupdate/frame_buffer.in
o
const byte DISPLAY_WIDTH = 84;
const byte DISPLAY_HEIGHT = 48;

wird:

//pins description are above
U8G2_SSD1306_128X64_NONAME_F_HW_I2C display(U8G2_R0, /* reset=*/
U8X8_PIN_NONE, /* clock=*/ 15, /* data=*/ 4); // ESP32 Thing, HW I2C with
pin remapping
//put another display from this file:
https://github.com/olikraus/u8g2/blob/master/tools/inoupdate/frame_buffer.in
o
const byte DISPLAY_WIDTH = 128;
const byte DISPLAY_HEIGHT = 64;

Den Rest seines Codes habe ich erst mal unverändert in meine „fliegend“ aufgebaute Hardware
übernommen:

http://esp8266-server.de/CO2Ampel.html
https://www.msxfaq.de/sonst/bastelbude/co2_sensor.htm
https://frida-kahlo-schule.lvr.de/media/lvrfridakahloschule/aktuelles/corona/Lueften_in_Klassenraeumen_Empfehlungen_LVR_Dezernat_12.40_Arbeitssicherheit.pdf
https://frida-kahlo-schule.lvr.de/media/lvrfridakahloschule/aktuelles/corona/Lueften_in_Klassenraeumen_Empfehlungen_LVR_Dezernat_12.40_Arbeitssicherheit.pdf
https://github.com/satr/esp32-with-co2-sensor-mh-z19b-and-lcd-display-nokia-5110

Last update: 2020/12/13 19:32 co_-projekt_-_iot https://www.linuxag.bndlg.de/dokuwiki/doku.php?id=co_-projekt_-_iot&rev=1607884329

https://www.linuxag.bndlg.de/dokuwiki/ Printed on 2026/02/04 06:38

Um nun daraus eine Ampel zu kreieren muss das ganze Projekt natürlich noch eine „ampelmässige“
Anzeige in Form einer WS2812 LED erhalten. Diese wird am +/-5V und an Pin 2 des TTGO Boards
(Datenleitung) angeschlossen. Damit ist erst mal die Hardware komplett. Das Foto dazu spare ich mir.
Um das Ganze ein wenig verständlicher aufzubereiten, hab ich mal ein bisschen mit Fritzing
„gezeichnet“:

in Textform sind die Verdrahtungsanweisungen dann auch noch im Sourcecode zu finden.

Die Routinen zur LED Ansteuerung habe ich aus https://esp8266-server.de/CO2Ampel.html
entnommen und für unsere Zwecke angepasst.

Die Einbindung ins TTN findet ihr unter
https://nathanmcminn.com/2018/09/12/tutorial-heltec-esp32-board-the-things-network/

Zuletzt sollte die Hardware dann noch in ein mehr oder weniger ansprechendes Gehäuse verpackt
werden. Dazu hab ich mit SolidWorks einen ersten Gehäuseentwurf gezeichnet, nicht schön, aber
zweckmässig … frei nach dem Motto „Form follows Function“. Hat trotzdem länger gedauert, als die
Sotwarebausteine zusammen zu packen, da ich als Softwerker nun mal kein Konstrukteur bin,
sondern im besten Fall Modellbauer.

Und so sieht das Ergebnis aus:

https://www.linuxag.bndlg.de/dokuwiki/lib/exe/detail.php?id=co_-projekt_-_iot&media=co2-ampel_fliegender_aufbau.jpeg
https://www.linuxag.bndlg.de/dokuwiki/lib/exe/fetch.php?media=bndlg_esp32_co2_ampel_lora_01.zip
https://www.linuxag.bndlg.de/dokuwiki/lib/exe/fetch.php?media=bndlg_esp32_co2_ampel_lora_01.zip
https://www.linuxag.bndlg.de/dokuwiki/lib/exe/fetch.php?media=bndlg_esp32_co2_ampel_lora_01.zip
https://www.linuxag.bndlg.de/dokuwiki/lib/exe/fetch.php?media=bndlg_esp32_co2_ampel_lora_01.zip
https://www.linuxag.bndlg.de/dokuwiki/lib/exe/fetch.php?media=bndlg_esp32_co2_ampel_lora_01.zip
https://www.linuxag.bndlg.de/dokuwiki/lib/exe/detail.php?id=co_-projekt_-_iot&media=untitled_sketch_steckplatine.jpg
https://esp8266-server.de/CO2Ampel.html
https://nathanmcminn.com/2018/09/12/tutorial-heltec-esp32-board-the-things-network/

2026/02/04 06:38 3/4 CO²-Projekt des Bürgernetzes Dillingen e.V.

DokuWiki der Linux-AG im Bürgernetz Dillingen e.V. - https://www.linuxag.bndlg.de/dokuwiki/

Hier gibts noch die Quelldateien dazu:
————————————–
Software (Arduino Sketch):

bndlg_esp32_co2_ampel_lora_01.zip

Solidworks-Konstruktion:
gehaeuse-kpl-03.zip

STL-Dateien für 3D Druck:
gehaeuse-stls.zip

kurzes Python Script zum Auslesen der Ampel (access key bitte erfragen bei frefle@bndlg.de)

import requests
import sys
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt

Aufrufparameter
url =
"https://co2_corona_ampel.data.thethingsnetwork.org/api/v2/query/esp32_coron
a_ampel_bndlg"
args = '?last=7d'
access_key = 'ttn-account-.......................................'

https://www.linuxag.bndlg.de/dokuwiki/lib/exe/detail.php?id=co_-projekt_-_iot&media=whatsapp_image_2020-12-11_at_16.39.33.jpeg
https://www.linuxag.bndlg.de/dokuwiki/lib/exe/detail.php?id=co_-projekt_-_iot&media=whatsapp_image_2020-12-12_at_16.56.23.jpeg

Last update: 2020/12/13 19:32 co_-projekt_-_iot https://www.linuxag.bndlg.de/dokuwiki/doku.php?id=co_-projekt_-_iot&rev=1607884329

https://www.linuxag.bndlg.de/dokuwiki/ Printed on 2026/02/04 06:38

headers = {'Accept': 'application/json', 'Authorization': 'key ' +
access_key}

Abfrage der gespeicherten Daten per Swagger UI
try:
 response = requests.get(url + args, headers=headers)
except OSError as e:
 print("Error: {0}".format(e))
 sys.exit(0)
if response.status_code == 200:
 print("Status 200, OK")
 data = response.json()
else:
 print("JSON data request not successfull!")
 sys.exit(0)

Darstellung
df = pd.DataFrame(data)
df['time'] = pd.to_datetime(df['time'])
ts = df.set_index('time')
print(ts)
ts.plot()
plt.ylim(15,30)
plt.grid()
plt.show()

das sind Echtzeitdaten, ich hab die Ampel in verschiedenen Räumen aufgestellt. am 12.12. 17:30 z.B.
5 Personen im Esszimmer …

From:
https://www.linuxag.bndlg.de/dokuwiki/ - DokuWiki der Linux-AG im Bürgernetz Dillingen
e.V.

Permanent link:
https://www.linuxag.bndlg.de/dokuwiki/doku.php?id=co_-projekt_-_iot&rev=1607884329

Last update: 2020/12/13 19:32

https://www.linuxag.bndlg.de/dokuwiki/
https://www.linuxag.bndlg.de/dokuwiki/doku.php?id=co_-projekt_-_iot&rev=1607884329

	[CO²-Projekt des Bürgernetzes Dillingen e.V.]
	[CO²-Projekt des Bürgernetzes Dillingen e.V.]
	CO²-Projekt des Bürgernetzes Dillingen e.V.

